Non-Conventional Approach/Technologies For

Value-Add to Agriculture & Food Industry (Secondary Agriculture Technologies)

Foodworld India
November 2011

Arvind Lali

DBT-ICT Centre for Energy Biosciences

Institute of Chemical Technology (formerly UDCT)

Matunga, Mumbai, INDIA

Agriculture

India GDP = 1.8 trillion USD

<u>Agriculture = 350 billion USD</u> (18% approx → provides 60% jobs)

Cereals + Rice + Wheat = 400 million ton/year Sugar cane = 300 million ton/year Oil seeds = 25 million ton/year

Agriculture Industry

Post-harvest activities including processing and preserving of agricultural products for the purpose of midway or final consumption.

Agricultural products + services = 1100 billion USD (~60% of GDP)

Current Needs

- To increase farming efficiencies
 - Far lower than the best in the world
 - Several reasons and Several ways
- To modernize agriculture industry
 - Increase processing efficiencies
 - Decrease waste generation
 - Devise new products
 - Devise novel technologies
 - Indigenous technologies
 - Effective deployment

Current Needs

- To increase farming efficiencies
 - Far lower than the best in the world
 - Several reasons and Several ways

- To modernize agriculture in

Increased Value will Catalyze efficiencies

- Increase processing efficiencies
- Decrease waste generation
- Devise new products
- Devise novel technologies
 - Indigenous technologies
 - Effective deployment

Current Needs

- To increase farming efficiencies
 - Far lower than the best in the world
 - Several reasons and Several ways
- To modernize agriculture industry
 - Increase processing efficiencies
 - Decrease waste generation
 - Devise new products
 - Devise novel technologies
 - Indigenous technologies
 - Effective deployment

Required > Transformation of Indian Agriculture Industry

- Better products + Better productivity
- New Products
- Decrease waste
- Add value to waste

Transformation of Indian Agriculture Industry

- Better products and Better productivity
- New Products
- Decrease waste

- Add value to Waste

Farm Waste: Surplus Biomass

Non-food & Non-fodder Biomass

- Cotton Stalk
- Wheat Straw
- Rice Straw
- Sugar Cane trash
- Many others

Annual availability > 400 million ton (total grain production = 400 million ton)

	Production Million tons	
Crop residues	1994	2010 (projected)
Field based residues		
Cotton stalk	19.39	30.79
Rice straw	214.35	284.99
Wheat straw	103.48	159
Maize Stalk	18.98	29.07
Soybeans	12.87	34.87
Jute stalk	4.58	1.21
Sugarcane tops	68.12	117.97
Ground nut straw	19	23.16
Processing Based residue		
Rice Husk	32.57	43.31
Rice Bran	10.13	13.46
Maize cob	2.59	3.97
Maize Husk	1.90	2.91
Coconut shell	0.94	1.50
Coconut husks	3.27	5.22
Ground Nut Husk	3.94	4.80
Sugarcane bagasse	65	114.04
Coffee husk	0.36	0.28

SUGARCANE RESIDUE

Sugarcane: A crop grown extensively

Cultivation area: 4 million ha

Cane produced: 300 million tons/year

Farm waste:

Sugarcane trash : 40 million tons/year

Process waste:

Bagasse available: 30 million tons/year

Vegetable & Fruit Waste

Annual Vegetable + Fruit Production = 150 million ton/year Handling + Processing Waste = 50 million ton (~30%!!)

Oil Industry Waste

Oil Seed Production = 35 million tons/year

Process Waste

Oil cake production = 7 million ton/year (@20% of seed) Other waste components (examples):

Groundnut/Coconut etc shells
Empty Fruit Bunch (palm)

Known Waste-to-wealth Technologies:

- Animal feed
- Burning for primary energy (co-generation)
- Conversion to Biogas
- Composting to bio-fertilizer
- Conversion to fermentation products
 - proteins, alcohol etc.

Low value technologies

Need to shift to High Level Technologies

High Volume - Low Value Products

- Conversion to biofuels/biochemicals
- Conversion to bulk food products (e.g. sugar, vinegar)

High Value - Low Volume Products

- Isolation of Nutraceuticals
- Conversion to High Value Food/Pharma products

High Volume - Low Value Products

- Conversion to biofuels/biochemicals

Biomass to Ethanol, Butanol, Acetic Acid,
Acetone, Furfural etc.

High Value - Low Volume Products

- Isolation of Nutraceuticals
- Conversion to High Value Food/Pharma products

High Volume - Low Value Products

- Conversion to biofuels/biochemicals
- Conversion to bulk food products (e.g. sugar, vinegar)

High Value

Biomass to Sugar, Xylitol, Gluconic Acid, Vinegar, etc.

- Isolation of Nutraceuticals
- Conversion to High Value Food/Pharma products

High Volume - Low Value Products

- Conversion to biofuels/biochemicals
- Conversion to bulk food products (e.g. sugar, vinegar)

High Value - Low Volume Products

Isolation of Nutraceuticals

Recover of Carotenes and Tocopherols from Vegetable Oils Recovery of Protein and Isoflavones from oil seed meals

High Volume - Low Value Products

- Conversion to biofuels/biochemicals
- Conversion to bulk food products (e.g. sugar, vinegar)

High Value Law Values Draducto

Bio/Chemical Conversion to Structured Lipids and Fats, Natural Flavors, Pharma intermediates

Conversion to High Value Food/Pharma products

Current Status of Value-Addition Approaches

- Inadequately developed Sub-optimal technologies
- Most attempts → Single Product Technologies
- Process Waste Generating Technologies

```
Result → High CAPEX - Low Return
→ High Risk → Low Sustainability
```

The BioRefinery Concept

11/30/2011 17

The concept of BIOREFINERY

"A Biorefinery is

a zero-waste producing collection of processes that
 utilizes renewable biological or bio-based sources
 to produce several products, whereby
 each component of the renewable biological or bio-based sources, is converted or utilized in a manner to add value, and hence sustainability to the processing plant."

Potential Biorefineries:

Sugar Mills
Vegetable oil Mills
Grain processing Mills
Milk Dairy
BioFuel plant

Development of BioFuel and BioRefinery Technologies at

DBT-ICT Centre for Energy Biosciences

Institute of Chemical Technology (UDCT)

Matunga, Mumbai

INDIA

11/30/2011 20

The Facility at the Centre A State-of-the-Art Facility for

- Molecular Engineering at the interface of Biology, Chemistry and Engineering
- Synthetic Biology
- Recombinant DNA technology
- Microbial Proteomics
- Metabolomics and Metabolic Engineering
- Fermentation Technology
- Enzyme Technology
- Separation Technologies
- Bioinformatics and Molecular modeling

The Facility at the Centre A State-of-the-Art Facility for

- Molecular Engineering at the interface of

Riology Chamistry and Engineering

Modern Separation and BioTransformation Technologies

- Metabolomics and Metabolic Engineering
- Fermentation Technology
- Enzyme Technology
- Separation Technologies
- Bioinformatics and Molecular modeling

BioRefinery Technologies Developed at DBT-ICT Centre for Energy Biosciences

Sugar BioRefinery

Vegetable Oil BioRefinery

Vegetable Oil BioRefinery

Selective Separation Technology Isolation and Purification of minor constituents

REPORTED METHODS

- > Saponification followed by Solvent Extraction
- > Saponification followed by Molecular distillation
- > Trans-esterification followed by extraction and distillation

OIL IS CHEMICALLY TRANSFORMED BY
ALL OF THE ABOVE METHODS

ICT Approach : Innovations in Process Design for

Selective Adsorptive/Chromatographic Separations

Dual Requirement: 1. Selectivity

2. High Productivity/Throughput

Selectivity → through Thermodynamic Design

Productivity and Throughput → through <u>Hydrodynamic Design</u>

'New and cheap Target specific Adsorbents/Conditions

High Mass Transfer Rate Low Pressure Drop Media

Selectivity design & Engineering

Process design & Engineering

Selective Biotransformation Technologies Specific Lipase Catalyzed Lipid Transformations

APPROACH: a) Engineered Lipase Or Hydrolytic Lipase

- b) 'Freeze' the enzyme
- c) 'Immobilize' the 'frozen' conjugate in reusable form

Lid deleted or pulled away to open the active site

<u>RESULT</u>: Stable Reusable Lipase Preparations for variety of applications

 $11/30/201\overline{1}$ 31

Integrated Technology Approach

Successful Biotransformation Technology

Summary

Biorefinery Concept a MUST for Secondary Agriculture to be sustainable

State-of-the-Art Technologies required for Successful Biorefinery

The Secondary Agriculture Triangle

Reference: Verma Committee Report on Secondary Agriculture for Planning Commission

www.secondaryagriculture.org/

The Secondary Agriculture Triangle

Technology User

Technology Users?

- Large Private Companies
- Public Sector Companies
- Farmers Cooperatives

Technology Provider

Funds Provider

Reference: Verma Committee Report on Secondary Agriculture for Planning Commission

